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ABSTRACT

Fractal modulation is obtained by forming a power weighted su-
perposition of scaled and modulated versions of the signal. The
resulting signal is self-similar with fractal characteristics. In this
paper we explore fractal modulation as a powerful method to gen-
erate rich signals, useful both for the synthesis of complex sounds,
like the sounds from natural events or ecological sounds, or as con-
trol functions of audio effects. The wavelet transform can be used
as an efficient tool in order to generate a subset of fractal modu-
lated signals that are power homogeneous. Any signal used as a
seed for fractal modulation is transformed into a multiscale sound
by means of a tree-structured multirate filter bank. Moreover, by
superimposing a structured modulation scheme one can generate
pseudo-periodic sounds whose partials have fractal behavior.

1. INTRODUCTION

Introduced in the context of communication, fractal modulation
allows for redundant transmission of the same signal at different
scales, useful for robust detection in a fading channel scenario
or for information hiding, since the characteristics of the fractal
modulated signal have a tendency to be more noise-like than the
original signal. In this paper we explore fractal modulation as a
powerful method to generate rich signals, useful both for the syn-
thesis of complex sounds, like the sounds from natural events or
ecological sounds, or as control functions of audio effects.

The fractal modulation scheme is somehow inspired by the
construction of the self-similar function known as the Weierstrass
cosine

w(t) =

+∞X
n=0

γn cos 2πant (1)

in which infinite scaled versions of the same cosine function are
weighted by a power of γ and added together, where 0 < γ < 1 <
a and aγ ≥ 1. The result is a nowhere differentiable sound whose
partials are further and further spaced away, with their frequencies
exponentially growing. The Weierstrass cosine is approximately
self-similar in the sense that

w(at) =
1

γ
(w(t)− cos 2πt) (2)

so that, time-scaling the function by a factor a obtains the same
function w(t), except for a smooth cos 2πt additional term and
an amplitude scaling factor γ. The graph of the Weierstrass co-
sine, shown in Figure 1, is a fractal with box counting dimension
D = 2 + log γ

log a
. Notice that γ controls the fractal dimension: D

approaches 2 when γ approaches 1 and decreases with γ.
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Figure 1: Weierstrass cosine function with box counting dimension
D = 1.25.

2. FRACTAL MODULATION

Similar to the construction of the Weierstrass cosine, fractal mod-
ulation employs scaled versions of a signal in order to build a
self-similar signal. Moreover, the scaled versions of the signal are
modulated to proper band, which is implicit in scaling the cosine
functions. The original signal can be considered as a “seed” for
the generation of the fractal.

At least in a formal sense, one can construct self-similar sig-
nals by adding together a countable number of scaled and mod-
ulated versions of the seed. We assume that a > 1 and, usu-
ally, 1 < a ≤ 2. Suppose that our seed signal x(t) is bandlim-
ited to [−(a − 1)π,+(a − 1)π], i.e., that its Fourier transform
X(ω) is zero for ω outside this interval. We will use the nota-
tion x(t) ∈ BL[A,B] to specify bandlimited signals in the interval
[A,B].

By the Fourier scaling theorem, the scaled signal

xn(t) =
1

an
x

„
t

an

«
(3)

has Fourier transform

Xn(ω) = X (anω) (4)

and, therefore,

xn(t) ∈ BL»
−

(a−1)π
an ,+

(a−1)π
an

–.
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The peculiar modulation scheme we are going to employ is
shown in Figure 2. The scaled signal is split into two subbands,
one covering negative frequencies and the other one covering pos-
itive frequencies:

X−(ω) = X(ω)χ]−(a−1)π,0](ω)

X+(ω) = X(ω)χ]0,+(a−1)π](ω)
(5)

where χ]A,B](ω) is the characteristic function of the semiclosed
interval ]A,B], i.e.

χ]A,B](ω) =


1 A < ω 6 B
0 otherwise (6)

The negative frequency band X−(ω) is modulated to positive
frequencies while the positive frequency band X+(ω) is modu-
lated to negative frequencies. In this way one obtains, for each
scaled and modulated version of the signal, a real signal whose ef-
fective bandwidth is the same as the baseband signal. The type of
modulation is somehow arbitrary; the reason for this given choice
will become apparent in the next Section. The choice of modulat-
ing frequencies

ω∓n = ± π

an−1
(7)

guarantees that, ideally, the scaled and modulated signals do not
overlap in the frequency domain. In fact, the scaled and modulated
signals have disjoint Fourier transforms for any n:

X−(anω − aπ) = X(anω − aπ)χ]+ π
an ,+

π
an−1 ](ω)

X+(anω + aπ) = X(anω + aπ)χ]− π
an−1 ,− π

an ](ω)
(8)

In the frequency domain, the self-similar signal s(t) is obtained
as a superposition of the signals in (8). For ω > 0 we can define
the Fourier transform of the self-similar signal as follows:

S(ω) =

+∞X
n=−∞

βnX (anω − aπ)χ] π
an ,

π
an−1 ](ω), (9)

where β > 1 is an arbitrary parameter. Actually β can be ex-
pressed in terms of a as follows:

β = aγ ; γ = loga β (10)

For ω < 0 the Fourier transform of the self-similar signal can be
obtained from the relationship

S(−ω) = S?(ω), (11)

where the symbol ? denotes complex conjugation. Notice that
since the terms of the sum in (9) do not overlap, for any given
frequency there is only one nonzero term, hence the sum always
converges, with a possible singularity at zero frequency if the orig-
inal signal has a DC component.

The signal s(t) obtained by taking the inverse Fourier trans-
form of (9) is indeed self-similar with respect to scaling by powers
of a. In fact, taking (10) into account and substituting ω

aK for ω
in (9), by performing a simple index change in the summation one
obtains:

S
“ ω

aK

”
= aKγS (ω) . (12)

for any K ∈ Z. Therefore, in the time domain we have:

s
“
aKt

”
= aK(γ−1)s (t) , (13)

which is the required self-similarity property.
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Figure 2: Modulation scheme employed for the scaled signals.

3. WAVELET BASED FRACTAL MODULATION

The frequency band subdivision of the scaling-modulation scheme
to form self-similar signals illustrated in the previous Section is
reminiscent of the structure of wavelet series. Indeed a wavelet
based method for fractal modulation was introduced by Wornell
and Oppenheim [1]. The simplest form of wavelet series [2, 3] is
the expansion

s(t) =
X

n,m∈Z

dn(m)ψn,m(t) (14)

0 π

an

Normalized Frequency

Xn

π

Figure 3: Frequency band subdivision of the scaled and modulated
versions of the signal.
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Figure 4: Magnitude Fourier transform of dyadic wavelets.

of a signal s(t) in terms of a set of functions obtained by time-
shifting and scaling a unique function, e.g., ψ0,0(t):

ψn,m(t) =
1√
2n
ψ0,0

„
t

2n
−m

«
; n,m ∈ Z, (15)

where the scaling factor is a = 2. As shown in Figure 4, the dyadic
wavelets have bandwidth one octave, with bandwidth decreasing
with the scale index n.

Theoretically the wavelets form the tessellation of the time-
frequency plane shown in Figure 5, with higher frequency resolu-
tion at large scales and lower frequency resolution at small scales.
In practice the cells overlap since the time-frequency uncertainty
of the wavelets is larger than the time-frequency sample spacing.

For the orthogonal wavelet bases, the expansion coefficients
are obtained by computing the scalar product of the signal with
the basis functions ψn,m(t):

dn(m) =

Z +∞

−∞
s(t)ψ∗n,m(t)dt (16)

Notice that, by performing the variable change t = 2nτ in the
integral in (16) and observing (15), one obtains:

dn(m) =
√

2n

Z +∞

−∞
s (2nτ)ψ∗0,m(τ)dτ (17)

Suppose that the signal s (t) is dyadically self-similar, i.e., that
(13) is satisfied with a = 2, then:

dn(m) = 2
n

„
γ− 1

2

«
d0(m), (18)

i.e., the expansion coefficients of a dyadic self-similar signal on
a dyadic wavelet basis are obtained by scaling the amplitude of
one and the same coefficient sequence d0(m). Vice versa, if the
amplitude scaled versions

2
n

„
γ− 1

2

«
x(m)
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Figure 5: Time-Frequency cells corresponding to dyadic wavelets.

of a unique discrete-time “seed” signal x(m) are employed as
wavelet coefficients, the self-similar signal

s(t) =
X
m∈Z

x(m)
X
n∈Z

2n(γ−1)ψ0,0

„
t

2n
−m

«
(19)

is obtained. In fact, one can immediately verify that s(t) defined
by (19) satisfies (13) with a = 2. Indeed, the functions

ξm(t) =
X
n∈Z

2n(γ−1)ψ0,0

„
t

2n
−m

«
=

X
n∈Z

2
n

„
γ− 1

2

«
ψn,m (t)

in the linear combination (19) are self-similar [1].
Intuitively, the wavelet way to fractal modulation is very effi-

cient since, rather than producing scaled and modulated versions
of a signal, one pre-scales the known basis functions, an operation
that is implicit in the organization of wavelet bases. Moreover, the
wavelet series synthesis of a signal can be achieved by means of
an iterated two-channel filter bank, where, in each stage, the in-
puts are upsampled by a factor 2 and a lowpass filter H(z) and
a highpass filter G(z) forming a quadrature mirror filter pair [4]
are applied. The diagram in Figure 6 serves as a fast generator of
self-similar signals.

The computational complexity of the wavelet based fractal
modulation scheme depends on the algorithm employed to com-
pute the wavelet transform. However, as we will see, the overall
cost is linear with the number of generated samples.

One method to compute fractal modulation is to pre-compute
the wavelets at each scale and multiply each of them by the sam-
ples of the seed signal. The output is formed by properly time-
shifting and adding the pre-multiplied wavelet components. We
will refer to this algorithm as the overlap-add method. In this case
the complexity can be estimated at N operations per output sam-
ple, where N is the number of scales. In fact, the length of the
scale n wavelet can be roughly estimated at 2n−1L samples ob-
tained as a cascade of upsampling and filtering operators where the
order of the filters L− 1 is an odd integer for orthogonal wavelets.
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Figure 6: Wavelet scheme for fractal modulation: an iterated
quadrature mirror synthesis filter bank is fed by the same sequence
x(m) at any branch. The residue coefficients rN (m) are arbitrary.

Thus, in order to generate an output signal of 2N−1L samples one
needs to multiply a single largest scale wavelet by one sample of
the seed sequence; the two next to largest scale wavelets are each
multiplied by one samples of the seed sequence and so forth. In
general, computation at scale n requires multiplication of 2N−n

coefficients by the length 2n−1L wavelets. This requires an order
of 2N−1L operations independently of scale. Therefore the to-
tal cost is 2N−1LN operations in order to produce 2N−1L output
samples, which requires a rate of N operations per output sample.

A computational cost of the same order of magnitude is ob-
tained when the scheme in Figure 6 is directly implemented. In
this case one can show that the required rate of operations is pro-
portional to the filter length L and does not depend on the number
of scales N . It must be pointed out that, for sufficiently large filter
orders, FFT based algorithms for the implementation of the filters
can be employed to further reduce the overall computational cost.

Due to the finite number of scales obtained by a finite depth fil-
ter bank, the synthesized signal is only approximately self-similar.
The residue coefficients rN (m), also known as the coefficients
of the scaling function, are arbitrary. If a sufficient number of
scales, corresponding to a sufficient number of stages of the filter
bank, are employed then the scaling residue represents a very low-
frequency signal and it can be disregarded in the synthesis of audio
signals. However, in the next Section we will propose the use of
self-similar signals also as low-frequency controlling functions of
audio effects or as modulators of partials, in which case the scaling
residue can be associated either to an amplitude scaled version of
the seed signal or to an envelope function.

An important property of the wavelet based self-similar signal
generator is found in the frequency domain:

S(ω) =
X
n∈Z

2nγX
“
ej2nω

”
Ψ0,0 (2nω), (20)

where X
`
ejω

´
denotes the DTFT of the seed signal x(m). Equa-

tion (20) and Figure 7 show that the frequency spectrum of x(m)
is (periodically) contracted by a factor 2n and directly weights the
essential octave band of the corresponding wavelet at scale n, con-
tributing to the frequency spectrum of the self-similar signal for
the interval

ˆ
π
2n ,

π
2n−1

˜
and its negative frequency mirror.

The type of crossed modulation illustrated in Section 2 emerges
in wavelet based fractal modulation: the scaled negative frequency
sideband of the seed signal contributes to the spectrum of the self-
similar signal in the positive frequencies. Indeed, it is possible to
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Figure 7: Frequency spectrum weighting of the wavelet bands
(rectangles) by the DTFT of the seed signal.

0 1000 2000 3000 4000 5000

-70

-60

-50

-40

-30

-20

-10

0

Frequency (Hz)

M
a

g
n

it
u

d
e

 (
d

B
)

Figure 8: Frequency spectrum of ocean wave impact sound.

show that the sinc wavelets

ψn,m(t) =
1√
2n

cos

„
3π

2

„
t

2n
−m

««
sinc

„
1

2

„
t

2n
−m

««
,

which are based on an ideal rectangular frequency subdivision,
form an orthogonal set of wavelets. However, the time localiza-
tion of the ideal wavelets is very poor and a wide class of regular
orthogonal wavelets exist which have a better time-frequency be-
havior [3].

4. AUDIO EFFECTS

Interesting and natural sound textures can be produced by means
of fractal modulation. As we showed in the previous Section, the
wavelet way to fractal modulation has a low computational cost,
which is linear in the number of output samples. The sounds and
effects obtained are so different from those produced by conven-
tional, e.g., AM and FM, modulation techniques that an attempt to
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Figure 9: Frequency spectrum of fractal modulation of the ocean
wave impact sound, with γ = 3 and N = 7 scales.

compare them with fractal modulation is totally meaningless both
from a computational and qualitative point of view.

4.1. Dense Textures

In the example of Figure 9 we applied the wavelet based fractal
modulation scheme to the impact sound of an ocean wave whose
frequency spectrum is reported in Figure 8. For the computation
we used N = 7 dyadic scales with Daubechies wavelets of degree
11 [3]. The frequency spectrum of the transformed sound shows
a highly structured organization, together with an underlying 1/f
decay. The modulated sound has a quite apocalyptic flavor, with
multivoiced inserts originating from the small scale components
and with rhythmic and reverberating patterns originating from the
large scale components.

The parameter γ controls the overall spectral decay: large val-
ues (γ � 1) move the spectral centroid to low frequencies, while
small values of (γ ≈ 1) tend to produce brighter sounds with flatter
spectra, closer to white noise. The parameter γ is indeed inversely
related to brightness, as it can be seen from equation (20). For
large values of γ a much higher weight is associated to the large
scale (low frequency) wavelets while for γ < 1 the small scale
(higher frequency) wavelets take the lead.

Sound examples using the ocean wave sound as seed can be
found at the URL: http://www.itn.liu.se/∼giaev/soundexamples.html,
where fractal modulation is applied for various values of the γ pa-
rameter, showing a corresponding shifting of the spectral center of
mass of the sound.

4.2. Sparse Textures

The ocean wave sound has the structure of several fine scale events
with an overall swooshing evolution. This type of structure is in-
teresting for the seed to generate complex sounds emulating a large
number of concurrent sources. On the other extreme, the applica-
tion of fractal modulation to sounds with sparser textures, such as
the cracking noise of fire, produces an augmented rhythmic texture
that lies halfway from the original sound to the sound of dripping
water, as it can be appreciated from the corresponding example
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Figure 10: Magnitude Fourier transform of frequency warped
wavelets with 1/3 octave frequency resolution.

available at the URL http://www.itn.liu.se/∼giaev/soundexamples.
html.

In sparse textures it is important or even critical to control the
number of scales associated with fractal modulation. Limiting the
number of scales achieves sounds where the original rhythmic pat-
tern can still be distinguished, while a multiscale structure is su-
perimposed. At the given URL we show patterns generated using
N = 7 and N = 3 scales, which have a different flavor in terms
of sharpness of attack and reverberation.

4.3. Extensions

A limitation of the wavelet method for fractal modulation lies in
the fact that only dyadic self-similarity with a = 2 can be imple-
mented. As a result, the frequency spectrum is organized by octave
bands, which can be too coarse for spectrum modeling. However,
orthogonal wavelets having rational scale factor a have been de-
vised [5] based on rational sampling rate filter banks. Alternately,
arbitrary scale wavelets, shown in Figure 10, have been defined
based on iterated frequency warping schemes [6, 7, 8], which are
suitable for richer fractal modulation.

Frequency warping can also be used in order to modify the per-
ceived pitch, if any, of the sounds generated by fractal modulation.
In an example that can be found at our URL, frequency warping
is employed in order to play a short melody with the fractal mod-
ulated ocean wave, which renders the acoustics of a stadium-like
crowd singing in an unorganized or spontaneous choir. An effi-
cient approximated frequency warping algorithm can be found in
[9], which allows for real-time computation.

4.4. Dynamic Fractal Modulation

The fractal modulation parameter γ can be dynamically and in-
teractively changed by suitably scaling the seed signal. Since the
sampling rate is different for each wavelet component, suitably
downsampled amplitude envelopes must be considered. However,
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Figure 11: Pseudo-sinusoid obtained by low-frequency cosine
modulated fractal modulation.

as the low-frequency components are generated by coefficient se-
quences at a very low sampling rate, excessive downsampling can
result in audible distortion of the time envelopes. A more costly so-
lution for higher fidelity time modulation of the γ parameter can be
realized by amplitude scaling the synthesized wavelet components
at the same sampling rate as the output signal. In the overlap-add
method this can be achieved by the pre-computed shifted wavelets
by the proper time-varying factor 2nγ(k), where γ(k) is the time-
varying fractal modulation parameter. Interesting brightness tran-
sition effects can be realized in his fashion.

4.5. Fractal Modulated Low Frequency Oscillator

Modulated fractal noise has been employed in the Fractal Additive
Synthesis technique [10, 11, 12] in order to model the 1/f behav-
ior of the harmonic partials in the sounds of natural instruments.
There, the seed signals are given by independent colored noise
sources for each wavelet scale. Parallel wavelet synthesis struc-
tures are cascaded with a cosine modulated filter bank (MDCT) in
order to synthesize the partials, where each wavelet section con-
trols a single sideband of a partial. The same scheme but with
deterministic signals replacing the colored noise sources can be
employed in order to generate self-similar pseudo-periodic sounds.

Using only the lower frequency fraction of the MDCT, one
can generate low-frequency pseudo-sinusoids with fractal fluctu-
ations. These signals with a pseudo-random behavior can prove
interesting as control functions of audio effects such as phaser,
flanger, chorus, vibrato, e.g., by replacing the traditional LFO with
a fractal LFO, whose oscillations are shown in Figure 11, where
the main sinusoidal behavior, controlled by the scaling residue se-
quence rN (m) of Figure 6, is not included in the signal in order to
better display the fluctuations. The introduction of a time-varying
fractal modulation parameter allows us to dynamically control the
depth of the effect, ranging from pure sinusoidal to extremely er-
ratic behavior.

5. CONCLUSIONS

In this paper we explored the use of fractal modulation for the syn-
thesis of complex sounds and of control functions to be employed
in audio effects. The technique is very promising and efficient
and it allows us to control complex behavior with a very small
amount of parameters. Textured sounds with multiscale organiza-
tion are typically generated by applying fractal modulation, where
the small scale similar components produce voiced patterns and
the large scale similar components produce rhythmic patterns.

While further experimentation is needed in order to assess the
aesthetical value of the proposed modulation scheme in musical
composition, simple examples serving the scope of appreciating
the new sonority can be found at our URL.
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